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silica gel column chromatography of the residue (eluant hex- 
ane-EtzO, 4:1, v/v) afforded 3,4-diphenyl-4-hydroxy-2-isoxazo- 
lin-Bone (215 mg): mp 106-107 O C  from Et@-pentane, identical 
with an authentic samplea2 Unreacted ester 3b (170 mg) was also 

from the solvent evaporation was purified by silica gel column 
chromatography (eluant hexane-CHzClz, 81, v/v), affording benzil 
(385 mg): mp 94-95 "C from benzene-hexane. 
3,4-Diphenyl-4-hydroxy-2-isoxazolin-5-one (4b). Methyl 

2,3-diphenyl-2-hydroxy-3-(hydroxyimino)propanoate4 (3b 650 mg) recovered. 
was dissolved in acetone (90 mL), Nz was bubbled through the 
solution for 5 min, and irradiation (high-pressure Hg lamp, 125 
W, Pyrex filter) was carried out for 5 h. After solvent evaporation, 

Registry No. 1, 68708-09-8; 3a, 89773-82-0; 3b, 54458-46-7; 
4a, 89773-83-1; 4b, 80490-41-1. 
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A New, Highly Stereoselective Reducing Agent, 
Potassium 9-(2,3-Dimethyl-2-butoxy)- 
9-boratabicyclo[ 3.3.l]nonane 

Summary: A new reagent, potassium 9-(2,3-dimethyl-2- 
butoxy)-9-boratabicyclo[3.3.l]nonane (K9-OThx-9- 
BBNH), achieves highly stereoselective reductions of cyclic 
ketones with very simple recovery of the product. 

Sir: We have synthesized a new stereoselective reducing 
agent, potassium 9-(2,3-dimethyl-Zbutoxy)-9-boratabicy- 
clo[3.3.l]nonane (K9-OThx-9-BBNH, l), and have exam- 
ined its stereoselectivity toward cyclic ketones. This bo- 
rohydride reveals an excellent stereoselectivity a t  0 "C, 
comparable to the results previously achieved with lithium 
tri-sec-butylborohydride at  that temperature. Moreover, 
the byproduct 9-BBN derivative is easily removed as an 
ate complex, greatly simplifying the recovery of the re- 
duction product. 

Recently we developed a general method for preparation 
in high purity of potassium trialkoxyborohydrides con- 
taining a wide variety of alkoxy groups from the direct 
reaction of potassium hydride and the corresponding 
trialkoxyboranes' (eq 1). We were able to extend this 

(1) KH + (RO)3B K(RO)3BH 

synthesis to the preparation of the borohydrides from 
B-OR-9-BBN.2 In the course of this study, we discovered 
that B-OThx-9-BBN was readily converted into its boro- 
hydride, K9-OThx-9-BBNH (eq 2 and 3).3 The reagent 

THF 

H 

1 

BH 5 9-BBN 

1 is very stable and no disproportionation was observed 
over more than 1 year when the solution in THF was 
stored under a positive pressure of nitrogen. This reagent 

(1) (a) Brown, H. C.; Nazer, B.; Sikorski, J. A. Organometallics 1983, 
2, 634. (b) Brown, H. C.; Cha, J. S.; Nazer, B. Znog. Chem., in press. 

( 2 )  Research in progress. 
(3) Addition of the corresponding potassium alkoxide to 9-BBN did 

not give these borohydrides in pure form, but the reaction proceeded with 
disproportionation. 
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Table I. Stereoselective Reduction of Cyclic Ketones 
with Potassium 

9-( 2,3-Dimet hyl-2-butoxy)-9-boratabicyclo[ 3.3.llnonane 
(K9-OThx-9-BBNH) in Tetrahydrofuran at 0 

ratio of less stable isomer. % 
K9-OThx- Li-s-Bu,- LiSia3- 

ketone 9-BBNH BHc BHd 
cyclohexanone 

2-methyl- 98.5 99.3 99.4 
3-methyl- 90 85 98 
4-methyl- 85.5 80.5 93 

3,3,5-trimethyl- >99.9 99.8 99 
norcamphor 95 99.6 99 
camphor 97.5 99.6 >99.9 

4- tert-butyl- 87 87.5d 96.5 

" A  2:l ratio for reagenkketone was utilized. bThe yields of 
alcohols were quantitative. Data taken from ref 4a. Present 
study. 

readily reduced ketones at 0 "C and exhibits an excellent 
stereoselectivity with representative cyclic ketones (eq 4). 

'OThx - 
98.5% cis 

Its stereoselectivity is comparable to the results previously 
achieved at 0 "C with lithium tri-sec-b~tylborohydride.~" 
However, it still does not approach the exceptionally high 
stereoselectivity possible with lithium trisiamylboro- 
hydride." The results and comparable data for the other 
two reagents are summarized in Table I. 

In recent years, new developments in the area of ste- 
reoselective reduction of cyclic ketones have been excep- 
tionally en~ouraging.~ Hindered trialkylborohydrides, such 
as lithium tri-sec-b~tylborohydride~" and lithium trisia- 
mylborohydride$ reduce cyclic ketones containing an 
a-methyl substitutent to the corresponding alcohols with 
199% of the less stable isomers. In cases where the alkyl 
substituent is further removed from the keto group, the 
stereoselectivity of the reduction is still high, in the 80% 
to 95% range. Although these trialkylborohydrides are 
very useful, their byproducts, the trialkylboranes, are often 

(4) (a) Brown, H. C.; Krishnamurthy, S. J. Am. Chem. SOC. 1972,94, 
7159. (b) Krishnamurthy, S. Aldrichimica Acta 1974, 7, 55. (c) Krish- 
namurthy, S.; Brown, H. C. J. Am. Chem. SOC. 1976,98,3383. (d) Brown, 
C. A.; Krishnamurthy, S. J. Organomet. Chem. 1978,156,111. (e) Brown, 
H. C.; Krishnamurthy, S. Tetrahedron 1979, 35, 567. 
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relatively difficult to remove from the reaction mixture. 
Usually they must be oxidized by alkaline hydrogen per- 
oxide, following reduction, to convert them into the cor- 
responding alcohols and boric acid. This might be an 
undesirable procedure, particularly in cases where the 
compound being reduced is itself sensitive to oxidation. 

Fortunately, the use of reagent 1 overcomes this prob- 
lem, while achieving comparable stereoselectivity. The 
byproduct of the reaction, K9-OThx-g-BBNOR, is readily 
converted into the hydroxy ate complex by treatment with 
a slight excess over the theoretical amount of water (eq 
5). This simple isolation procedure provides a major 

pentane 

25 'C 
+ 2H20 

OThx I t ROH t ThxOH ( 5 )  
OH 

advantage for this reagent in stereoselective reductions 
where it is desirable to avoid the presence of higher tri- 
alkylboranes in the reaction mixture. 

The following procedure served to prepare B-OThx-9- 
BBN. An oven-dried, 250-mL, round-bottomed flask, 
equipped with a side arm, a condenser, and an adaptor 
connected to a mercury bubbler, was cooled to room tem- 
perature under a stream of nitrogen and maintained under 
a static pressure of nitrogen. To this flask was added 12.2 
g of 9-BBN (100 mmol) and 30 mL of THF; 10.7 g of 
2,3-dimethyl-2-butanol (105 mmol) was added to the slurry 
of 9-BBN and THF dropwise with vigorous stirring at 
room temperature. After the addition was completed, the 
reaction mixture was brought to a gentle reflux to ensure 
completion of hydrogen evolution (1 h). Evaporation of 
the solvent, followed by distillation from a small piece of 
potassium metal, yielded 20 g of pure B-OThx-9-BBN 
(89% yield): bp 95-96 OC (1.3 mm), nmD 1.4785, llB NMR 
6 55.1 ppm (neat).5 

The following procedure served for the preparation of 
the reagent. Into a 100-mL flask was placed 6.4 g of po- 
tassium hydride (160 "01) as an oil suspension by using 
a double-ended needle. Potassium hydride was washed 
with THF (3 X 10 mL) to remove the oil medium.6 To 
this oil-free potassium hydride was added 50 mL of freshly 
distilled THF, followed by 18.0 g of B-OThx-9-BBN (80 
mmol). The reaction mixture was stirred vigorously at  
room temperature. The reaction was complete within 24 
h, producing the addition compound, K9-OThx-9-BBNH, 
in pure form: llB NMR 6 -2.8 (d, JBH = 60.3 Hz), IR Y 

2000 cm-l (B-H), 1355 cm-l (B-0). 
The following procedure was used to explore the ste- 

reoselectivity of this reagent. In a N-mL, round-bottomed 
flask was placed 2.2 mL of a 0.92 M solution of the reagent 
in THF (2.0 mmol). The flask was maintained at  0 "C by 
immersion in an ice-water bath. To the flask was added 
1.0 mL of precooled 2-methylcyclohexanone solution in 
THF (1.0 M in ketone) and the reaction mixture was 
stirred at  0 "C for 3 h. The reaction was then quenched 
by addition of 2 mL of 2 N HC1, and the aqueous layer was 
saturated with anhydrous potassium carbonate. GC 
analysis of the organic layer showed the presence of a 
quantitative yield of 2-methylcyclohexanol, containing 
98.5% of the cis isomer. 

(5) The chemical shifts are reported relative to BF,.OEh with chemical 
shifts downfield from BF,.OEk assigned as positive. 

(6) Brown, C. A. J. Org. Chem. 1974.39, 3913. 
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The use of such a large excess of reagent is not necessary, 
as shown by the following larger scale reaction. In the 
usual assembly, 5.6 g of 2-methylcyclohexanone (50 mmol) 
was added dropwise as the neat liquid to 60 mL of the 
reagent solution in THF (55 mmol) a t  0 "C. The reaction 
was complete in 1 h and the mixture was hydrolyzed with 
2.5 mL (140 mmol) of water for 0.5 h at room temperature. 
All THF was then pumped off by using an aspirator. Then 
50 mL of pentane was added to the residue and the mix- 
ture was stirred. A white solid precipitated out. The 
pentane solution was separated and subjected to fractional 
distillation: 4.8 g of 2-methylcyclohexanol (84%), bp 
166-168 OC (753 mm), containing by GC analysis 98.5% 
of the cis isomer. 

Registry No. 1, 89999-86-0; B-OThx-9-BBN, 89999-87-1; 
9-BBN, 280-64-8; 2-methylcyclohexanone, 583-60-8; 3-methyl- 
cyclohexanone, 591-24-2; 4-methylcyclohexanone, 589-92-4; 4- 
tert-butylcyclohexanone, 98-53-3; 3,3,5-trimethylcyclohexanone, 
873-94-9; norcamphor, 497-36-1; camphor, 76-22-2; thexyl alcohol, 
594-60-5; cis-2-methylcyc1ohexano1, 7443-70-1. 
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Photoinitiated Additions of Ketones to 
Bicycle[ l.l.O]butanes. The Existence of Diverse 
Reaction Pathways 

Summary: A radical chain process has been established 
for the addition of a series of ketones across the Cl-C3 
bond of bicyclo[l.l.0]butane and its methylated deriva- 
tives. For certain ketones, capture of an acyl radical in- 
termediate, generated in a Norrish type I cleavage of the 
ketone, competes effectively with the radical chain process. 

Sir: Recently, we reported the addition of a variety of 
nucleophiles across the Cl-C7 bond of tricyclo- 
[4.1.0.O2?']heptane in a photoinitiated reaction that in- 
volved initial electron transfer to excited state l-cyano- 
naphtha1ene.l We have also described the addition of 
acetone across this same carbon-carbon u bond.2 We now 
report that a variety of different photoinitiated reaction 
paths can be observed for the addition of ketones across 
the Cl-C3 u bond of bicyclo[l.l.0]butane and its meth- 
ylated derivatives. 

Table I lists a series of reactions involving the pho- 
toinitiated addition of ketones across carbon-carbon single 
bonds of strained hydrocarbons. Yields appear to depend 
on the type of methyl substitution on the parent hydro- 
carbon and on the nature of the ketone. In those cases 
where methyl substitution was present a t  the Cl(bridge- 
head) position, only "anti-Markovnikov" addition was 
observed and the yields were Thus, while 1 gave 2 

(1) Gassman, P. G.; Olson, K. D.; Walter, L.; Yamaguchi, R. J. Am. 
Chem. SOC. 1981,103,4977. Gassman, P. G.; Olson, K. D. Ibid. 1982,104, 
3740. 

(2) Gassman, P. G.; Smith, J. L. J. Org. Chem. 1983, 48, 4438. 
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